Subsolutions: a Journey from Positone to Infinite Semipositone Problems

نویسنده

  • EUN KYOUNG LEE
چکیده

We discuss the existence of positive solutions to −∆u = λf(u) in Ω, with u = 0 on the boundary, where λ is a positive parameter, Ω is a bounded domain with smooth boundary ∆ is the Laplacian operator, and f : (0,∞) → R is a continuous function. We first discuss the cases when f(0) > 0 (positone), f(0) = 0 and f(0) < 0 (semipositone). In particular, we will review the existence of non-negative strict subsolutions. Along with these subsolutions and appropriate assumptions on f(s) for s 1 (which will lead to large supersolutions) we discuss the existence of positive solutions. Finally, we obtain new results on the case of infinite semipositone problems (lims→0+ f(s) = −∞).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Nonexistence Results for Quasilinear Semipositone Dirichlet Problems

We use the sub/supersolution method to analyze a semipositone Dirichlet problem for the p-Laplacian. To find a positive solution, we therefore focus on a related problem that produces positive subsolutions. We establish a new nonexistence result for this subsolution problem on general domains, discuss the existence of positive radial subsolutions on balls, and then apply our results to problems...

متن کامل

Singular Positone and Semipositone Boundary Value Problems of Nonlinear Fractional Differential Equations

We present some new existence results for singular positone and semipositone nonlinear fractional boundary value problemD0 u t μa t f t, u t , 0 < t < 1, u 0 u 1 u ′ 0 u′ 1 0, where μ > 0, a, and f are continuous, α ∈ 3, 4 is a real number, and D0 is Riemann-Liouville fractional derivative. Throughout our nonlinearity may be singular in its dependent variable. Two examples are also given to ill...

متن کامل

Multiple positive solutions to singular positone and semipositone m-point boundary value problems of nonlinear fractional differential equations

where 1 < α < 2, 0 < βi < 1, i = 1, 2, . . . ,m – 2, 0 < η1 < η2 < · · · < ηm–2 < 1, ∑m–2 i=1 βiη α–1 i < 1, D α 0+ is the standard Riemann–Liouville derivative. Here our nonlinearity f may be singular at u = 0. As an application of Green’s function, we give some multiple positive solutions for singular positone and semipositone boundary value problems by means of the Leray–Schauder nonlinear a...

متن کامل

Positive Solutions of a Singular Positone and Semipositone Boundary Value Problems for Fourth-Order Difference Equations

This paper studies the boundary value problems for the fourth-order nonlinear singular difference equationsΔ4u i−2 λα i f i, u i , i ∈ 2, T 2 , u 0 u 1 0, u T 3 u T 4 0. We show the existence of positive solutions for positone and semipositone type. The nonlinear term may be singular. Two examples are also given to illustrate the main results. The arguments are based upon fixed point theorems i...

متن کامل

Singular Differential, Integral and Discrete Equations: the Semipositone Case

Fixed point methods play a major role in the paper. In particular, we use lower type inequalities together with Krasnoselskii’s fixed point theorem in a cone to deduce the existence of positive solutions for a general class of problems. Moreover, the results and technique are applicable also to positone problems. 2000 Math. Subj. Class. 34B15, 47H30, 39A10.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009